52 research outputs found

    A Planetary lensing feature in caustic-crossing high-magnification microlensing events

    Full text link
    Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.Comment: 14 pages, 4 figures. Accepted for publication in Ap

    Dairy Cattle, a Potential Reservoir of Human Campylobacteriosis: Epidemiological and Molecular Characterization of Campylobacter jejuni From Cattle Farms

    Get PDF
    Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24Β°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain

    Correction to: Metagenomic analysis of isolation methods of a targeted microbe, Campylobacter jejuni, from chicken feces with high microbial contamination

    Get PDF
    Following publication of the original article [1], the authors reported an error in Fig.Β 2. The correct figure is shown below

    Bitter Taste Receptors Influence Glucose Homeostasis

    Get PDF
    TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca2+ and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease

    Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance

    Get PDF
    Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants

    Different threats posed by two major mobilized colistin resistance genes β€” mcr-1.1 and mcr-3.1 β€” revealed through comparative genomic analysis

    No full text
    ABSTRACT: Objectives: Global spread of mobilized colistin resistance gene (mcr)-carrying Escherichia coli poses serious threats to public health. This study aimed to provide insights into different threats posed by two major mcr variants: mcr-1.1 and mcr-3.1. Methods: Genetic backgrounds and characteristics of mobile genetic elements carrying mcr-1.1 or mcr-3.1 in 74 (mcr)-carrying E. coli isolated from swine farms were analysed, and comparative genomic analysis was performed with the public sequence database. Results: The mcr-1.1 showed high horizontal transferability (6.30 logCFU/ml). Genetic background of mcr-1.1, including genetic cassette/plasmid, was transferred without insertion sequences (ISs) and/or multi-drug resistance (MDR) and highly shared across strains. The major mcr-1.1-cassette was β€œmcr-1.1-pap2”, mainly encoded in IncI2 and IncX4. Mcr-3.1 exhibited relatively lower conjugation frequency (0.97 logCFU/ml). The mcr-3.1-cassette was flanked by IS26 and was highly variable across strains because of the insertion, deletion, or truncation of IS6100, IS4321, or IS5075. Near the mcr-3.1 cassette, MDR regions consisting of antimicrobial/heavy metal resistance genes were identified, which varied across strains. From the MCR3-E13 strain, a mcr-3.1-carrying IncHI2-fragment was integrated into the bacterial chromosome via IS26-mediated co-integration. To our knowledge, this was the first study to describe that a mcr-3.1-carrying plasmid could be inserted into the bacterial chromosome. Conclusions: Based on high horizontal transferability, mcr-1.1 could play a major role on colistin resistance propagation. On the other hand, mcr-3.1 could be transmitted with MDR and have dual pathways mediated by plasmid transfer (horizontal transmission) and chromosomal insertion (vertical transmission), enabling it to proliferate stably despite its lower horizontal transferability

    The elastase and melanogenesis inhibitory and anti-inflammatory activities of phosvitin phosphopeptides produced using high-temperature and mild-pressure (HTMP) pretreatment and enzyme hydrolysis combinations

    No full text
    ABSTRACT: This study aimed to determine the skin protective effect of egg yolk phosvitin phosphopeptides (PPPs). Phosvitin was separated from the egg yolk, and PPPs were produced using high-temperature and mild-pressure (HTMP) pretreatment and enzyme-sterilization hydrolysis combinations. The elastase and melanogenesis inhibitory activities and anti-inflammatory effects of egg yolk PPPs were determined. All PPPs significantly inhibited elastase activity, but the PPPs prepared with HTMP pretreatment and trypsin-sterilization (HTMP-T-S) combination suppressed the tyrosinase activity the most. PPPs (3 mg/mL) inhibited the Ξ±-melanocyte-stimulating hormone-induced melanin production in B16F10 melanoma cells by 31.18 to 38.58%. In addition, PPPs effectively inhibited nitric oxide (NO) production in the LPS (lipopolysaccharide)-stimulated RAW 264.7 macrophages, and the PPPs from HTMP-T-S exhibited the highest inhibitory activity. The protein expressions of pro-inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2 were down-regulated by the PPPs from the HTMP-T-S. Therefore, PPPs could be used as an anti-melanogenic, anti-elastase, and anti-inflammatory agent for humans and skin care products

    Hyper-Aerotolerant Campylobacter coli From Swine May Pose a Potential Threat to Public Health Based on Its Quinolone Resistance, Virulence Potential, and Genetic Relatedness

    Get PDF
    <jats:p>Low-field (B<jats:sub>0</jats:sub> < 0.2Β T) magnetic resonance imaging (MRI) is emerging as a low cost, point-of-care alternative to provide access to diagnostic imaging technology even in resource scarce environments. MRI magnets can be constructed based on permanent neodymium-iron-boron (NdFeB) magnets in discretized arrangements, leading to substantially lower mass and costs. A challenge with these designs is, however, a good <jats:italic>B</jats:italic><jats:sub><jats:italic>0</jats:italic></jats:sub> field homogeneity, which is needed to produce high quality images free of distortions. In this work, we describe an iterative approach to build a low-field MR magnet based on a <jats:italic>B</jats:italic><jats:sub><jats:italic>0</jats:italic></jats:sub>-shimming methodology using genetic algorithms. The methodology is tested by constructing a small bore (inner bore diameter = 130Β mm) desktop MR magnet (<15Β kg) at a field strength of <jats:italic>B</jats:italic><jats:sub><jats:italic>0</jats:italic></jats:sub> = 0.1Β T and a target volume of 4Β cm in diameter. The configuration consists of a base magnet and shim inserts, which can be placed iteratively without modifying the base magnet assembly and without changing the inner dimensions of the bore or the outer dimensions of the MR magnet. Applying the shims, <jats:italic>B</jats:italic><jats:sub><jats:italic>0</jats:italic></jats:sub> field inhomogeneity could be reduced by a factor 8 from 5,448 to 682Β ppm in the target central slice of the magnet. Further improvements of these results can be achieved in a second or third iteration, using more sensitive magnetic field probes (e.g., nuclear magnetic resonance based magnetic field measurements). The presented methodology is scalable to bigger magnet designs. The MR magnet can be reproduced with off-the-shelf components and a 3D printer and no special tools are needed for construction. All design files and code to reproduce the results will be made available as open source hardware.</jats:p&gt
    • …
    corecore